Meaning of Stokes Theorem:
Stokes Theorem:
Example: Verify

$$
\begin{aligned}
& \iint_{\text {Curl }} \text { F } \cdot \vec{n} d S=\int_{\text {Flux of }} \vec{F} \cdot \vec{T} d s \\
& \text { the Curl } \vec{F} \quad \begin{array}{l}
\text { line integral } \\
\text { around } \\
\text { three }
\end{array} \quad \text { boundary }
\end{aligned}
$$

Stokes Theorem in case $\forall=$ hemisphere

$$
\begin{aligned}
& \quad x^{2}+y^{2}+z^{2}=9, z \geq 0 \\
& \vec{F}=y \underset{\sim}{i}-x \underset{\sim}{j}
\end{aligned}
$$

Soln: The boundary Curve for the hemisphere

$$
\text { is: } e=x^{2}+y^{2}=3
$$

- First we calculate RHS:

$$
\begin{array}{rl}
\int \vec{F} \cdot \vec{T} d s & =\int_{e}^{t} M d x+N d y=\int_{0}^{x=3 \cos t} \begin{array}{r}
y=3 \sin t \\
0
\end{array} \quad d x=-3 \sin t d t \\
e & d y=3 \cos t d t \\
& =9 \int_{0}^{2 \pi}-\sin ^{2} t-\cos ^{2} t d t=-9 \cdot 2 \pi=-18 \pi \sin t
\end{array}
$$

- Now calculate LHS: \iint Curl $\vec{F} \cdot \vec{n} d S$

$$
\begin{aligned}
& \operatorname{CuN} \vec{F}=\left|\begin{array}{ccc}
\underset{\sim}{i} & \dot{j} & \underset{\sim}{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y & -x & 0
\end{array}\right|=\underset{\sim}{m}(-1-1)=-2 k \\
& \vec{r}(x, y)=\left(\overrightarrow{x, y, \sqrt{9-x^{2}+y^{2}}}\right) \\
& \vec{n}=\frac{x \underset{\sim}{i}+y \dot{j}+z k}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x \underset{i}{i}+y_{j}+z k}{3}
\end{aligned}
$$

$\operatorname{Curl} \vec{F} \cdot \vec{n}=(-2 k) \cdot(x \underset{\sim}{i}+y \underset{j}{j}+z \underset{\sim}{h}) \frac{1}{3}=-\frac{2}{3} z$
Spherical Coordinates: $u=\varphi, v=\theta$

$$
\vec{r}(\varphi, \theta)=3(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)
$$

We have: $A=\left|\vec{r}_{\phi} \times \vec{r}_{\theta}\right|=3^{2} \sin \varphi$ (From map problem -) $\left.\begin{array}{c}\text { or just compute }\end{array}\right)$

$$
\begin{aligned}
& \iint_{\Delta} \operatorname{Curl} \left\lvert\, \vec{F} \cdot \vec{n} d S=\iint_{\otimes}-\frac{2}{3} z d S\right.=\int_{0}^{\pi / 2} \int_{0}^{2 \pi}-\frac{2}{3} z 3^{2} \sin \varphi d \theta d \varphi \\
&=-\frac{2}{3} 3^{3}(2 \pi) \int_{0}^{\pi / 2} \cos \varphi \sin \varphi d \varphi\left.=-36 \pi \frac{\sin ^{2} \varphi}{2}\right]_{0}^{\pi / 2}=-18 \pi \\
& d u=\sin \varphi \\
& d u d \varphi
\end{aligned}
$$

Example (2) Use Stokes to obtain the correct interpretation of Curl \vec{F} as "circulation per area in \vec{F} "
Soln: Let \vec{F} be a vector field. Recall that oFF.T$d s$ is the "circulation in \vec{F} around P "
because it measures the component of \vec{F} tangent to l, weighted with arclength $d s$, and summed around the curve e.
So... take a small disc D_{ε} of radius $\varepsilon>0$, oriented with
 normal \vec{n}, placed at a point $\underset{\sim}{x}=\langle x, y, z\rangle$.
Let C_{ε} be the boundary circle of D_{E}, oriented by RAR with $\stackrel{\rightharpoonup}{n}$.

Now apply Stokes Theorem:

$$
\iint_{D_{\varepsilon}} \underbrace{\operatorname{Curl} \vec{F} \cdot \vec{n}} d S=\underbrace{\oint \vec{F} \cdot \vec{T} d S}
$$

we wonder what
we know this is Curt. \vec{n} measures Circulation in \vec{F} around P_{ε}

Now for the trick: assuming \vec{F} is
smoothly varying, (say continuous derivatives) we know that as $\varepsilon \rightarrow 0$, the value of Curl $\vec{F} \cdot \vec{n}$ in D_{ϵ} is very close, ie. tends to it's value at the center, namely, Curl $\vec{F} \cdot \vec{n}(\underset{\sim}{x})$. Thus we can approximate Curl $\vec{F} \cdot \vec{n}$ as constant, and pull it out of $\iint_{\text {a }}$, only incuring a Small error which will be negligible as $\varepsilon \rightarrow 0$,

$$
\text { Ie. } \iint_{D_{\varepsilon}} \operatorname{cur}|\vec{F} \cdot \vec{n} d S=\operatorname{Cur}_{\begin{array}{c}
\text { what we are } \\
\text { tugging to } \\
\text { interpret }
\end{array}}^{\vec{F} \cdot \vec{n}(\underline{x})} \underbrace{\int D_{\varepsilon} d, S}_{\text {Area of } D_{\varepsilon}}+D_{\varepsilon}|=\pi \varepsilon^{2}
$$

Thus from Stokes Theorem:

$$
\iint_{D_{\varepsilon}} \operatorname{Cur}\left|\vec{F} \cdot \vec{n} d S=C_{u r}\right| \vec{F} \cdot \stackrel{n}{n}(\underline{x})\left|D_{\varepsilon}\right|+\operatorname{errou}=\oint_{C_{\varepsilon}} \vec{F} \cdot \vec{T} d s
$$

Divide thru by $\left|D_{\varepsilon}\right| \ldots$

$$
\operatorname{Cur} \left\lvert\, \stackrel{\rightharpoonup}{F} \cdot \stackrel{\rightharpoonup}{n}(\underset{\sim}{x})=\frac{1}{\left|D_{\varepsilon}\right|} \oint_{C_{\varepsilon}} \stackrel{\rightharpoonup}{F} \cdot \vec{T} d s-\underbrace{\substack{\text { tends to to } \\ \text { zero as }}}_{\substack{\text { error } \\\left|D_{\varepsilon}\right|}}\right.
$$

Thus: $\operatorname{Cur}\left(\vec{F} \cdot \vec{n}(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\left|D_{\varepsilon}\right|} \oint_{E_{\varepsilon}} \vec{F} \cdot \vec{T} d s\right.$
(Applies to any areca D_{ε} oriented by normal \vec{n}) circulation per area

Conclude: The value of Curl $\vec{F} \cdot \vec{n}$ at a point $\underset{\sim}{x}$ measures the circulation per area in \vec{F} around the axis \vec{n}.

Example (3) Around which axis \vec{n} does \vec{F} exhibit maximum circulation?
Ans: $\operatorname{Cur} \mid \vec{F} \cdot \vec{n}=\| \operatorname{Cur}(\vec{F} \mid\|\vec{n}\| \cos \theta$ which is maximum when $\cos \theta=1, \theta=0$, So the axis \vec{n} around which \vec{F} circulates most rapidly is $\vec{n}=\frac{\operatorname{Cur} \mid \vec{F}}{\|\operatorname{Cur} \mid \vec{F}\|}$, ie the direction of Curlf?

Example (4) What does the length of CurlE measure?
Ans: The maximum circulation per are a occurs around axis $\vec{n}=\frac{\operatorname{Curl} \vec{F}}{\|\operatorname{Curl} \vec{F}\|}$, the magnitude being

Conclude: Curl gives the axis around which \vec{F} is circulating most rapidly, and its length is the magnitude of maximum circulation?
Note: The component of Curl \vec{F} in any unit direction $\stackrel{\rightharpoonup}{n}$ gives circulation per area around \vec{n}

$$
\begin{aligned}
& \binom{\text { Circlutation per }}{\text { area around } \vec{n}}=\operatorname{Cur}|\vec{F} \cdot \vec{n}=\|\operatorname{Cur} \mid \vec{F}\| \cos \theta \\
& =\text { Component of Curl } \overrightarrow{\vec{n}} \text { in direction } \\
& \text { of unit vector } \vec{n}
\end{aligned}
$$

罒 Application：The Curl as＂revolutions per second＂＝frequency in fluid model－
Assume $\vec{F}=\vec{V}=$ velocity in fluid model of a density $\delta(x, y, t)$ moving at velocily $\vec{v}=\vec{v}(x, y, t)$
Ie．a streamling $\vec{r}(t)$ is the \rightarrow curve taken by a fluid particte，and the velocity vector $\vec{v}(\underset{\sim}{x})=\vec{\Gamma}^{\prime}(t)$ for the streamline three $\underset{\sim}{x}=(x, y, z)$ Q：What does Curl \vec{V} measure at pt (x, y, z) ？ Ans：Curl $\vec{v} \cdot \vec{n}=4 \pi \omega$ where $\omega=\frac{\text { revolutions }}{\text { sec }}$ of a bead circulating on a circular wire C_{E} oriented by \vec{n} assuming $\vec{v} \cdot T$ gives the velocity（ie，no friction，no loss of momentum） in limit $\varepsilon \rightarrow 0$ ．
Check：Dimensions $\left[v_{x \lambda}=\frac{1}{L}[v]=\frac{1}{T}\right.$

$$
\begin{aligned}
& \left.[\text { Curl } \vec{v} \cdot n]=\left[\begin{array}{l}
{[\text { Curl } \vec{v}][\vec{n}]=\frac{1}{T}} \\
\left(\left[\frac{\vec{x}}{T}\right]\right. \\
\|\overrightarrow{\vec{w}}\|
\end{array}\right]=\frac{[\vec{\omega}]}{\frac{L}{T} \| n}=1 \Rightarrow \text { unit vectors are dimensionsionless of freq }\right)
\end{aligned}
$$

Example (5): Verify Curl $\vec{v} \cdot \vec{n}=4 \pi \omega$
Soln:
(The approximate equality \cong becomes $=$ in $\operatorname{limit} \varepsilon \rightarrow 0$)
But

$$
=2 \pi \varepsilon \bar{v}
$$

Check:

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t=\frac{1}{N \Delta t} \lim _{N \rightarrow \infty} \sum_{k=1}^{N} f\left(t_{k}\right) \Delta t_{k}=\lim _{N \rightarrow \infty} \frac{\sum_{\text {average of } f}^{N} f\left(t_{n}\right)}{N}
$$

$$
\begin{aligned}
& \int_{\varepsilon} \underbrace{\vec{v} \cdot \vec{T}} d s=\int_{d s=\varepsilon d \theta}^{2 \pi} \vec{v} \cdot \vec{T} \varepsilon d \theta \\
& \vec{v} \cdot \vec{T}=\frac{d s}{d t}=2 \pi \varepsilon \frac{1}{2 \pi} \int_{0}^{2 \pi} \vec{V} \cdot \vec{T}(\theta) d \theta \\
& =\frac{\text { dist }}{\text { time of bead }} \text { around } e_{\varepsilon} \quad \underbrace{d s}_{\bar{V}=\text { average speed }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Curl } \vec{v} \cdot \stackrel{\rightharpoonup}{n} \underset{\substack{\hat{N} \\
\text { stokes }}}{\cong} \frac{\text { Circulation }}{\text { area }} \\
& =\frac{1}{\pi \varepsilon^{2}} \int \vec{V} \cdot \vec{T} d s
\end{aligned}
$$

Conclude: Curl $\vec{v} \cdot \vec{n} \cong \frac{1}{\pi \varepsilon^{2}} 2 \pi z \bar{v}=\frac{2}{\varepsilon} \bar{v}$
Now at average speed \bar{v}, the bead makes one revolution around $2 \pi \varepsilon=$ circumference of l_{ε} in time period T where

$$
\begin{aligned}
& 2 \pi \varepsilon=\bar{V} \cdot T \Rightarrow T=\frac{2 \pi \varepsilon}{\bar{v}} \\
& \text { dist }=\frac{\text { dist }}{\text { time }} \text { time }
\end{aligned}
$$

Thus: $\frac{\text { \#reu }}{\text { Sec }}=\frac{1}{\text { time of one reu }}=\frac{1}{T}=\frac{\bar{v}}{2 \pi \varepsilon}=\omega$
Conclude:

$$
\begin{aligned}
& \omega=\frac{\bar{v}}{2 \pi \varepsilon}, \quad \operatorname{Curl} \left\lvert\, \vec{v} \cdot \vec{n}=\frac{2}{\varepsilon} \bar{v}\right. \\
& \bar{v}=2 \pi \varepsilon \omega \Rightarrow \operatorname{Curl} \vec{v} \cdot \vec{n}=\frac{2}{\varepsilon} 2 \pi q \omega=4 \pi \omega
\end{aligned}
$$

Summary: In the fluid model, the Curl \vec{v} gives axis of maximal rotation of a bead constrained to move around a ciriular wire oriented \perp Curl \vec{v}. The length $\|$ Curlv$\|$ then gives the maximal frequency of rotation, and $\operatorname{Cull} \overrightarrow{\vec{v}} \cdot \vec{n}$ gives frequency of rotation around axis $\stackrel{\rightharpoonup}{n}$.
In Fluid Mechanics: Cuul $\vec{v}=$ vorticity. Vorticity plays a fuadamental role in the theory of fluids.

Example (6) Assume a fluid is moving with velocity vector $\vec{F}=\vec{V}=x \underset{i}{i}+x y z \underset{\sim}{k} \cdot \frac{m}{S}\left(\frac{m}{s}=\frac{\text { meters }}{\mathrm{sec}}\right)$
(1) Find axis of maximal rotation at $P=(1,-1,2)=x_{0}$
(2) Find the maximal circulation/area
(3) Find the frequency ω and period T for a bead rotating with \vec{v} around a circle of radius ε, center x_{0}, around axis $\vec{A}=(\overrightarrow{2,-1,1)}$.
Soln (1)

$$
\operatorname{Curl} \vec{F}=(\overrightarrow{x z,-y z, 0})
$$

(a) $\underset{\sim}{x}=(1,-1,2)$, CurlF$=(\overrightarrow{2}, 2,0)$
\therefore axis ot maxial rotation $\vec{n}=\frac{\operatorname{Cul|} \mid \vec{F}}{\| C \text { url } \mid \vec{F} \|}=\frac{(2,2,0)}{\sqrt{4+4+0}}=\frac{(1,1,0)}{\sqrt{2}}$
(2) Maximal Circulation per area $=\|$ Cur $\mid \vec{F} \|=\sqrt{8}=2 \sqrt{2}$ occurs around axis $\vec{n}=\frac{(1,1,0)}{\sqrt{2}}$
(3) For $\vec{F}=\vec{v} \frac{m}{\delta}, \quad \operatorname{Curl} \vec{v}=(\overrightarrow{x z},-y z, \overrightarrow{0}), \operatorname{Curl} \vec{v} \cdot n=4 \pi \omega$

$$
w=\frac{1}{4 \pi} \operatorname{Cur} \left\lvert\, \vec{v} \cdot n\left(x_{0}\right)=\frac{1}{4 \pi}(2,2,0) \cdot \frac{\vec{A}}{\|\vec{A}\|}=\frac{1}{4 \pi} \frac{(\overrightarrow{2,2,0}) \cdot(\overrightarrow{2,-1,1})}{\sqrt{4+1+1}}=\frac{2}{4 \pi \sqrt{6}}=\frac{1}{\sqrt{6} \pi}\right.
$$

Ans: $\omega=\frac{1}{\sqrt{6} \pi} \frac{1}{\sec }, T=\frac{1}{\omega}=\sqrt{6} \pi$ Seconds

Why Stokes Theorem is true -
Stokes Theorem: $\iint_{f} C u r l \vec{F} \cdot \vec{n} d S=\oint \vec{F} \cdot \vec{T} d s$
$Q=$ Why is it true?
Ans: Because Cunli$\cdot \vec{n}$ is the circulation per area,
so when we write a Riemann
 Sum for \iint curl $\vec{F} \cdot \hat{n} d S$, each element $D_{i j}$ reduces to a fine integral around its boundary, and all the interion adjacent line integrals cancel out because they have opposite orientation.
Ie., $\begin{aligned} & \iint_{S} \operatorname{Cur} \mid \vec{F} \cdot \vec{n} d S=\lim _{N \rightarrow \infty}\left|\sum_{i j} \iint_{D_{i j}} \operatorname{Cur}\right| \vec{F} \cdot \vec{n} d S \\ &=\sum_{i j} \int_{e_{i j}} \vec{F} \cdot \vec{T} d s \\ &=\int \vec{F} \cdot \vec{T} d s\end{aligned}$

Ie,

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty} \sum_{i j} \int_{P_{i j}} \vec{F} \cdot \vec{T} d s \text { All adjacent line } \\
& \text { integrals cancel } \\
& \text { out leaving only } \\
& \text { boundary } \\
& =\int_{e} \vec{F} \cdot \vec{T} d s
\end{aligned}
$$

Rectangular $D_{i s c} D_{i j} e_{i j} e_{i j}^{1}+e_{i j}^{2}, e_{i j}^{3} e_{i j}^{4}$

That is: all integrals on adjacent sides cancel out because they have opposite orientation, and the only line integrals left are the line integrals around outer boundary. Note: This would be a proof, except we used Stokes Theorem to get $\int_{\Delta S_{i j}} C_{\text {url }} \vec{F} \cdot \hat{n} d S=\int_{e_{i j}} \vec{T} \cdot \vec{T} d s$, so we cant formally use that to prove StokesThm.

Conclude: The argument is circular in the sense that we assume Stokes Tim to interpret Curl $\vec{F} \cdot \vec{n}$ as circulation per area, then use this to prove Stokes Them -Even so, this is the correct intuition for why Stokes Th is TRUE?

