Rearing of Stokes Theorem:
Stokes theorem:
$$\iint Curl F. \vec{n} dS = \int \vec{F} \cdot \vec{T} ds$$

Stokes theorem: $\iint Curl F. \vec{n} dS = \int \vec{F} \cdot \vec{T} ds$
Example: Verify the Curl \vec{F} around
the Curl \vec{F} around
Stokes theorem in
Case \cancel{A} = hemisphere
 $x^2 + \cancel{B}^2 + \cancel{2}^2 = 9$, $\cancel{Z} \ge 0$
 $\vec{F} = \cancel{3} \cancel{2} - \cancel{3}$
Soln: The boundary Curve for the hemisphere
is: $C = \cancel{x^2} + \cancel{y^2} = 3$
• First we calculate RHS: $\vec{F}_{-3} = \underbrace{C}_{-3} = \underbrace{C}_$

· Now calculate LHS: SJ Curl F. n dS

$$CuN\vec{F} = \begin{vmatrix} \dot{z} & \dot{z} & \dot{z} \\ \partial_{x} & \partial_{y} & \partial_{z} \end{vmatrix} = \dot{M}(-1-1) = -2k$$

$$\begin{vmatrix} \dot{y} & -\chi & 0 \end{vmatrix}$$

$$\vec{r}(x,g) = (x, y, \sqrt{9-x^2+y^2})$$

$$\vec{n} = \frac{x\hat{z} + y\hat{a} + zk}{\sqrt{x^2+y^2+z^2}} = \frac{x\hat{z} + y\hat{a} + zk}{3}$$
because
because
because
because
g is on
g is on

2

$$\begin{aligned} \left(\text{vrl} \vec{F} \cdot \vec{n} = (-2h) \cdot (x \dot{z} + b \dot{z} + zh) \frac{1}{3} = -\frac{2}{3} z \\ \text{Spherical coordinates: } u = \theta, v = \theta \\ \vec{r}(\theta, \theta) = 3 \left(\cos\theta \sin\theta, \sin\theta \sin\theta, \cos\theta \right) \\ \text{We have: } A = \left[\vec{r}_{\phi} \times \vec{r}_{\theta} \right] = \frac{2}{3} \sin\theta \quad (\text{From map problem } - \\ \text{or just compute} \right] \\ \text{Uorl} \vec{F} \cdot \vec{n} \, dS = \int \int -\frac{2}{3} z \, dS' = \int \int -\frac{2}{3} z \, dS' = \int \int -\frac{2}{3} z \, d\theta \, d\theta \\ s = -\frac{2}{3} \frac{3}{3} (z\pi) \int_{0}^{\pi/2} \cos\theta \sin\theta \, d\theta = -36\pi \frac{\sin^2\theta}{2} \int_{0}^{\pi/2} = -18\pi \frac{1}{3} \frac{\pi}{2} \end{aligned}$$

3 Example De Vsc Stokes to obtain the correct (3) interpretation of CurlF as "circulation per area in F" Soln: Let F be a vector field. Recall that PF. Fds is the "circulation in F around C" because it incosures the component of \$ tangent to P, weighted with arclength ds, and summed around the curve C. around the curve C. So... take a small disc De of F.T.S.F.F. radius E>0, oriented with normal \hat{n} , placed at a point x = (x, y, z). Let Ce be the boundary circle of A M F DE, oriented by AHR with n. Now apply Stokes Theorem: JJ Curl岸·市dS = gF·产ds We know this is We wonder what Circulation in Faround CE Curl F. n measures

Now for the trick: assuming
$$\vec{F}$$
 is
smoothly varying, (say continuous derivatives)
we know that as $\varepsilon \rightarrow 0$, the value of
CurlFind in D_{ε} is very close, is tends to
it's value at the center, namely, CurlFind (\approx).
Thus we can approximate CurlFind as constant,
and pull it out of SS, only incuring a
Small error which will be negligible as $\varepsilon \rightarrow 0$.
I.e. SS curlFind $dS = \text{CurlFin}(x)$ SS dist error
 D_{ε} what we are D_{ε} smaller than IP_{ε} !
Thus from Stokes Theorem:
SSCurlFind $dS = \text{CurlFin}(x)$ IS $dS + \text{error}$
 D_{ε} ($x = 10_{\varepsilon}$] = $\pi \varepsilon^{2}$
Thus from Stokes Theorem:
SSCurlFind $dS = \text{CurlFin}(x) = 10_{\varepsilon}$ + error tends to
 D_{ε} ($z = 10_{\varepsilon}$] = $\pi \varepsilon^{2}$

Thus: Curl
$$\vec{F} \cdot \vec{n}(\vec{x}) = \lim_{\substack{E \to 0}} \prod_{\substack{D \in I \\ E \to 0}} \vec{P} \vec{F} \vec{T} ds}$$

(Applies to any area
 D_e oriented by normal \vec{n}) circulation per area
 $Conclude$: The value of Curl $\vec{F} \cdot \vec{n}$ at a point \vec{x}
measures the circulation per area in \vec{F}
around the axis \vec{n} . \vec{N}
 $Example$ (3) Around which axis \vec{n} does \vec{F}
exhibit maximum circulation?
Ans: Curl $\vec{F} \cdot \vec{n} = ||Curl \vec{F}|| ||\vec{n}|| cos \theta$
which is maximum when $cos \theta = 1, \theta = 0$
So the axis \vec{n} around which \vec{F} circulates
most rapidly is $\vec{n} = \frac{Curl \vec{F}}{||Curl \vec{F}||}$, ie the
direction of Curl \vec{F} ?

Example (1) What does the length of Corlie 6 wearnne 5 Ans: The maximum circulation per area occurs around axis $\vec{n} = \frac{Curl\vec{F}}{\|Curl\vec{F}\|}$, the magnitude being $Curl \vec{F} \cdot \vec{n} = Curl \vec{F} \cdot \frac{Curl \vec{F}}{||Curl \vec{F}||} = \frac{||Curl \vec{F}||^2}{||Curl \vec{F}||} = \frac{||Curl \vec{F}||^2}{||Curl \vec{F}||} = \frac{maximum}{curculation}$ Conclude: Curlé gaves the axis around which F is circulating most rapidly, and its length is the magnitude of maximum circulation 0 Note: The component of Curle in any unit direction à gives circulation per area aroundà (Circlitation per) = CurlF.n = [[CurlFI]cos D area around n) = (n bruons aro = Component of CurlF in direction of unit vector n CurlF

Application The Curl as revolutions per (7)
second "= frequency in fluid model -
Assume
$$\vec{F} = \vec{V}$$
 = velocity in fluid model of
a density $\delta(x;b;z)$ moving at velocity $\vec{v} = \vec{v}(x;b;z)$
I.e. a streamling $\vec{r}(z)$ is the streamline
curve taken by a fluid (arten)
particle, and the velocity vector $\vec{v}(z;) = \vec{r}'(z)$ for the streamline thrue $z = (x;y;z)$
(2) What does Curl \vec{v} measure at pt $(x,y;z)$?
Ans: Curl $\vec{v} \cdot \vec{n} = 4\pi\omega$ where $\omega = \frac{revolutions}{sec}$
of a bead circulating on a circulan wire C_{e}
oriented by \vec{n} assuming $\vec{v} \cdot \vec{T}$ gives the
velocity (i.e., no friction, no loss of momentum)
in limit $\varepsilon \rightarrow 0$.
Check: Dimensions $[V_x] = \frac{1}{L} [V] = \frac{1}{T}$ $\vec{v} \cdot \vec{n}$
 C_{e}
 $\left[(\frac{m}{m}) = [Curl \vec{v}] [\vec{n}] = \frac{1}{T}$ $v \cdot \vec{n}$ rotating
 $\left[(\frac{m}{m}) = \frac{m}{m} = 1 \Rightarrow$ unit vectors are dimensionless)

Example (5): Verify Curl
$$\vec{\nabla} \cdot \vec{n} = 4\pi\omega$$

Soln: Curl $\vec{\nabla} \cdot \vec{n} \cong \frac{\text{Circulation}}{\text{area}}$ $\omega = \frac{\text{rev}}{\sec}$ $\int_{\text{rotating}}^{n}$ rotating bead
 $= \frac{1}{\pi \epsilon^2} \int_{\epsilon}^{n} \vec{\nabla} \cdot \vec{T} \, ds$ $\psi = \frac{\epsilon}{\sec}$
(The approximate equality \cong becomes = in limit $\epsilon \rightarrow 0$)
But $\begin{cases} \vec{\nabla} \cdot \vec{T} \, ds = \epsilon \, d\theta \\ \epsilon & ds = \epsilon \, d\theta \end{cases}$ $\int_{0}^{2\pi} \vec{\nabla} \cdot \vec{T} \, \epsilon \, d\theta$
 $\vec{\nabla} \cdot \vec{T} = \frac{ds}{dt} = 2\pi\epsilon \, \frac{1}{2\pi} \int_{0}^{2\pi} \vec{\nabla} \cdot \vec{T} \, (\theta) \, d\theta$
 $= \frac{dist}{time} \text{ around } \theta_{\epsilon}$ $\vec{\nabla} = \text{average speed } \frac{ds}{dt}$
 $= 2\pi\epsilon \, \vec{\nabla}$

Check:

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt = \frac{1}{N\Delta t} \lim_{N \to \infty} \sum_{k=1}^{N} f(t_k) \Delta t_k = \lim_{N \to \infty} \sum_{k=1}^{N} \frac{f(t_k)}{N}$$
average of f

Conclude:
$$Curl \vec{v} \cdot \vec{n} \cong \frac{1}{\pi \epsilon} 2\pi \epsilon \vec{v} = \frac{2}{\epsilon} \vec{v}$$
 (1)
Now at average speed \vec{v} , the bead makes
one revolution around $2\pi\epsilon = circumference of ϵ_{ϵ}
in time period T where
 $2\pi\epsilon = \vec{v} \cdot \vec{T} \implies T = \frac{2\pi\epsilon}{\vec{v}}$
 $dist = \frac{dist}{time} \cdot time$
Thus: $\frac{\#reu}{\sec} = \frac{1}{time} \frac{1}{time} = \vec{T} = \frac{\vec{v}}{2\pi\epsilon} = \omega$
Conclude:
 $\omega = \frac{\vec{v}}{2\pi\epsilon}$, $Corl \vec{v} \cdot \vec{n} = \frac{2}{\epsilon} \vec{v}$
 $\vec{v} = 2\pi\epsilon \omega \implies Curl \vec{v} \cdot \vec{n} = \frac{2}{\epsilon} \vec{v}$
 $\vec{v} = 2\pi\epsilon \omega \implies Curl \vec{v} \cdot \vec{n} = \frac{2}{\epsilon} 2\pi\epsilon \omega = 4\pi\omega$
Summary: In the fluid model, the Curl \vec{v}
gives axis of maximal rotation of a beach
constrained to move around a circular wire oriented
 $\perp Curl \vec{v}$. The length ||Curl \vec{v} || then gives the
maximal frequency of rotation, and Curl \vec{v} in gives
frequency of rotation around axis \vec{n} .
In Fluid Mechanics: Curl $\vec{v} = vorticity$. Vorticity
plays a fundamental role in the theory of fluids.$

Example (b) Assume a fluid is moving with (b)
velocity vector
$$\vec{F} = \vec{V} = \chi_1^2 + \chi_8 \chi_8^2 \qquad (\vec{F} = \frac{ndevs}{sec})$$

() Find axis of maximal rotation at $P = (1_3 - 1_3 \chi) = \chi_0^2$
(c) Find the maximal circulation / area
(d) Find the frequency (w) and period T for a
bead rotating with \vec{V} around a circle of radius c,
center χ_0 , around axis $\vec{A} = (2, -1, 1)$,
Soln (i) $Cuv|\vec{F} = \begin{vmatrix} \chi_1^2 & \chi_2^2 & \chi_3^2 \\ -\chi_2 & \chi_3^2 & -\chi_2^2 \\ -\chi_2^2 & -\chi_2^2 & -\chi_2^2 \\ -\chi_2^2 & -\chi_2^2 & -\chi_2^2 \\ -\chi_2^2 & -\chi_3^2 & -\chi_2^2 \\ -\chi_2^2 & -\chi_2^2 & -\chi_2^2 \\ -\chi_2^2 & -\chi_2^2 & -\chi_2^2 \\ -\chi_3^2 & -\chi_3^2 & -\chi_3^2 -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 \\ -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 \\ -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 \\ -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 \\ -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 & -\chi_3^2 \\ -\chi_3^2 & -\chi_3^2 &$

I.e.,
$$\int CurlF \cdot \vec{n} dS = \lim_{N \to \infty} \sum \int CurlF \cdot \vec{n} dS = \lim_{N \to \infty} \sum \int CurlF \cdot \vec{n} dS = D_{ij}$$

$$= \lim_{N \to \infty} \sum \int F \cdot \vec{T} dS \qquad All adjacent line$$

$$= \lim_{N \to \infty} \sum \int F \cdot \vec{T} dS \qquad All adjacent line$$

$$= \int F \cdot \vec{T} dS \qquad e_{ij} e_{ij$$

That is; all integrals on adjacent sides cancel out because they have opposite orientation, and the only line integrals left are the line integrals around outer boundary. Note: This would be a proof, except we used stokes Theorem to get ISCurlFinds=JF.Tds asi, Cij so we can't formally use that to prove Stokes Thm. Conclude: The argument is circular in the Sense that we assume Stokes Thm to interpret Curl F.n as circulation per avea, then use this to prove Stokes Thm - Even so, this is the correct intuition for why Stokes Thm is TRVF?